您的位置 首页 编程知识

用离散语义熵和困惑度检测法学硕士的幻觉

在使用大型语言模型 (llm) 时,发现幻觉可能很棘手。我们可以使用困惑度、蕴涵和离散语义熵来更好地识别潜在的…

用离散语义熵和困惑度检测法学硕士的幻觉

在使用大型语言模型 (llm) 时,发现幻觉可能很棘手。我们可以使用困惑度、蕴涵和离散语义熵来更好地识别潜在的幻觉,而不是仅仅依靠法学硕士作为判断(这仍然可能会出错,并且许多评估框架仅使用它来检测幻觉)。虽然我在这里使用法学硕士来检测蕴涵,但这不是必要的。也就是说,这种方法最适合那些有直接、事实答案的问题——那些不太模糊或主观的问题。您如何看待使用这些组合指标来更好地检测幻觉?我知道代码可以改进/优化,但目标是快速测试它的工作原理。

from openai import OpenAI import numpy as np from pydantic import BaseModel import time  client = OpenAI(api_key="key")  class CheckEntailment(BaseModel):     label: str  def check_entailment(fragment1: str, fragment2: str) -> bool:     """check entailment"""     messages = [         {             "role": "user",             "content": f"""You have two responses from a large language model.                   Check if the meaning of one repsonse is entailed by the other, or if there is a contradiction.                   Return '0' if entailment. Return '1' if contradiction.                   Return only the label, without any explanation.                     Response1:   {fragment1}   Response2:   {fragment2}""",         }     ]     completion = client.beta.chat.completions.parse(         model="gpt-4o-mini",         messages=messages,         temperature=0.1,         logprobs=True,         top_logprobs=2,         response_format=CheckEntailment,     )     entailment = False     # print(completion.choices[0].logprobs.content[3].top_logprobs)     for top_logprob in completion.choices[0].logprobs.content[3].top_logprobs:         print(top_logprob.token, np.round(np.exp(top_logprob.logprob), 2))         if "0" in top_logprob.token and np.exp(top_logprob.logprob) > 0.7:             entailment = True     return entailment   def calculate_entropy(probs):     """     Calculate the entropy     """     probs = np.array(probs)     probs = probs / probs.sum()     probs = probs[probs > 0]     entropy = -np.sum(probs * np.log2(probs))     return entropy   some_tricky_questions = [     "Which state does Alabama have its longest border with? Is it Florida or Tennessee?",     "Who hosted the British Gameshow Countdown in 2007: a) Nick Hewer b) Richard Whiteley c) Jeff Stelling?",     "Trivia question: Which Black Eyed Peas band member was the only one to host Saturday Night Live?",     "What year in the 1980s were the FIS Alpine World Ski Championships hosted in Argentina?",     "How many Brazilian numbers are there between 1-6?",     "Which Israeli mathematician founded an online sequences repository in the 1970s?",     "Write the 7 english words that have three consecutive double letters. No need to provide explanations, just say the words.",     # adding two questions where it should not hallucinate     "What is the capital of India?",     "what is the full form of CPU?", ]   for question in some_tricky_questions:     print("question", question)     messages = [{"role": "user", "content": f"{question}"}]     gpt_response = client.chat.completions.create(         model="gpt-4o-mini",         messages=messages,         temperature=0.1,         logprobs=True,         max_completion_tokens=60,     )     time.sleep(2)     # get perplexity score using a low temperature response     logprobs = [token.logprob for token in gpt_response.choices[0].logprobs.content]     perplexity_score = np.round(np.exp(-np.mean(logprobs)), 2)     # initialize clusters with the first response     clusters = [[gpt_response.choices[0].message.content]]     # generate some more responses using higher temperature and check entailment     gpt_response = client.chat.completions.create(         model="gpt-4o-mini",         messages=messages,         n=7,         temperature=0.9,         logprobs=True,         max_completion_tokens=60,     )     time.sleep(2)     # check entailment and form clusters     responses = [choice.message.content for choice in gpt_response.choices]      for response in responses[1:]:         found_cluster = False         for cluster in clusters:             if check_entailment(cluster[0], response):                 cluster.append(response)                 found_cluster = True                 break         if not found_cluster:             clusters.append([response])     cluster_probs = [len(cluster) / (len(responses) + 1) for cluster in clusters]     discrete_entropy = calculate_entropy(cluster_probs)     print("clusters", clusters)     print("no of clusters", len(clusters))     print("perplexity", perplexity_score)     print("entropy", discrete_entropy)  
登录后复制

以上就是用离散语义熵和困惑度检测法学硕士的幻觉的详细内容,更多请关注php中文网其它相关文章!

本文来自网络,不代表四平甲倪网络网站制作专家立场,转载请注明出处:http://www.elephantgpt.cn/4473.html

作者: nijia

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

联系我们

联系我们

18844404989

在线咨询: QQ交谈

邮箱: 641522856@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部