您的位置 首页 编程知识

CelebA 是 PyTorch

请我喝杯咖啡☕ *我的帖子解释了 celeba。 celeba() 可以使用 celeba 数据集,如下所示:…

请我喝杯咖啡☕

*我的帖子解释了 celeba。

celeba() 可以使用 celeba 数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(可选-默认:”trn”-类型:str)。 *可以设置“train”(162,770张图片)、“valid”(19,867张图片)、“test”(19,962张图片)或“all”(202,599张图片)。
  • 第三个参数是target_type(可选-默认:“attr”-类型:str或str列表): *备注:
    • 可以为其设置“attr”、“identity”、“bbox”和/或“landmark”。
    • 也可以设置空列表。
    • 可以设置多个相同的值。
    • 如果值的顺序不同,则其元素的顺序也会不同。
  • 第四个参数是transform(optional-default:none-type:callable)。
  • 第 5 个参数是 target_transform(optional-default:none-type:callable)。
  • 第 6 个参数是 download(可选-默认:false-类型:bool): *备注:
    • 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
    • 如果为 true 并且数据集已下载,则将其提取。
    • 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
    • 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
    • 下载数据集需要 gdown。
    • 您可以从这里手动下载并解压数据集(img_align_celeba.zip with identity_celeba.txt、list_attr_celeba.txt、list_bbox_celeba.txt、list_eval_partition.txt 和 list_landmarks_align_celeba.txt)到 data/celeba/。
from torchvision.datasets import CelebA  train_attr_data = CelebA(     root="data" )  train_attr_data = CelebA(     root="data",     split="train",     target_type="attr",     transform=None,     target_transform=None,     download=False )  valid_identity_data = CelebA(     root="data",     split="valid",     target_type="identity" )  test_bbox_data = CelebA(     root="data",     split="test",     target_type="bbox" )  all_landmarks_data = CelebA(     root="data",     split="all",     target_type="landmarks" )  all_empty_data = CelebA(     root="data",     split="all",     target_type=[] )  all_all_data = CelebA(     root="data",     split="all",     target_type=["attr", "identity", "bbox", "landmarks"] )  len(train_attr_data), len(valid_identity_data), len(test_bbox_data) # (162770, 19867, 19962)  len(all_landmarks_data), len(all_empty_data), len(all_all_data) # (202599, 202599, 202599)  train_attr_data # Dataset CelebA #     Number of datapoints: 162770 #     Root location: data #     Target type: ['attr'] #     Split: train  train_attr_data.root # 'data'  train_attr_data.split # 'train'  train_attr_data.target_type # ['attr']  print(train_attr_data.transform) # None  print(train_attr_data.target_transform) # None  train_attr_data.download # <bound method CelebA.download of Dataset CelebA #     Number of datapoints: 162770 #     Root location: data #     Target type: ['attr'] #     Split: train>  len(train_attr_data.attr), train_attr_data.attr # (162770, tensor([[0, 1, 1, ..., 0, 0, 1], #                  [0, 0, 0, ..., 0, 0, 1], #                  [0, 0, 0, ..., 0, 0, 1], #                  ..., #                  [1, 0, 1, ..., 0, 1, 1], #                  [0, 0, 0, ..., 0, 0, 1], #                  [0, 1, 1, ..., 1, 0, 1]]))  len(train_attr_data.attr_names), train_attr_data.attr_names # (41, ['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive',  #       'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', #       'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', #       ... #       'Wearing_Necklace', 'Wearing_Necktie', 'Young', ''])  len(train_attr_data.identity), train_attr_data.identity # (162770, tensor([[2880], [2937], [8692], ..., [7391], [8610], [2304]]))  len(train_attr_data.bbox), train_attr_data.bbox # (162770, tensor([[95, 71, 226, 313], #                  [72, 94, 221, 306], #                  [216, 59, 91, 126], #                  ..., #                  [103, 103, 143, 198], #                  [30, 59, 216, 280], #                  [376, 4, 372, 515]]))  len(train_attr_data.landmarks_align), train_attr_data.landmarks_align # (162770, tensor([[69, 109, 106, ..., 152, 108, 154], #                  [69, 110, 107, ..., 151, 108, 153], #                  [76, 112, 104, ..., 156, 98, 158], #                  ..., #                  [69, 113, 109, ..., 151, 110, 151], #                  [68, 112, 109, ..., 150, 108, 151], #                  [70, 111, 107, ..., 153, 102, 152]]))  train_attr_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, #          0, 1, 0, 0, 0, 0, 0, 0, 1, 1, #          0, 1, 0, 0, 1, 0, 0, 1, 0, 0, #          0, 1, 1, 0, 1, 0, 1, 0, 0, 1]))  train_attr_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, #          0, 1, 0, 0, 0, 0, 0, 0, 0, 1, #          0, 1, 0, 0, 1, 0, 0, 0, 0, 0, #          0, 1, 0, 0, 0, 0, 0, 0, 0, 1]))  train_attr_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, #          1, 0, 0, 0, 0, 0, 0, 0, 0, 0, #          1, 0, 0, 1, 1, 0, 0, 1, 0, 0, #          0, 0, 0, 1, 0, 0, 0, 0, 0, 1]))  valid_identity_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor(2594))  valid_identity_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor(2795))  valid_identity_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor(947))  test_bbox_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([147, 82, 120, 166]))  test_bbox_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([106, 34, 140, 194]))  test_bbox_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([107, 78, 109, 151]))  all_landmarks_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154]))  all_landmarks_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153]))  all_landmarks_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158]))  all_empty_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)  all_empty_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)  all_empty_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)  all_all_data[0] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  (tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, #           0, 1, 0, 0, 0, 0, 0, 0, 1, 1, #           0, 1, 0, 0, 1, 0, 0, 1, 0, 0, #           0, 1, 1, 0, 1, 0, 1, 0, 0, 1]), #   tensor(2880), #   tensor([95, 71, 226, 313]), #   tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154])))  all_all_data[1] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  (tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, #           0, 1, 0, 0, 0, 0, 0, 0, 0, 1, #           0, 1, 0, 0, 1, 0, 0, 0, 0, 0, #           0, 1, 0, 0, 0, 0, 0, 0, 0, 1]), #   tensor(2937), #   tensor([72, 94, 221, 306]), #   tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153])))  all_all_data[2] # (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, #  (tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, #           1, 0, 0, 0, 0, 0, 0, 0, 0, 0, #           1, 0, 0, 1, 1, 0, 0, 1, 0, 0, #           0, 0, 0, 1, 0, 0, 0, 0, 0, 1]), #  tensor(8692), #  tensor([216, 59, 91, 126]), #  tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158])))  import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.patches import Circle  def show_images(data, main_title=None):     if "attr" in data.target_type and len(data.target_type) == 1          or not data.target_type:         plt.figure(figsize=(12, 6))         plt.suptitle(t=main_title, y=1.0, fontsize=14)         for i, (im, _) in enumerate(data, start=1):             plt.subplot(2, 5, i)             plt.imshow(X=im)             if i == 10:                 break         plt.tight_layout(h_pad=3.0)         plt.show()     elif "identity" in data.target_type and len(data.target_type) == 1:         plt.figure(figsize=(12, 6))         plt.suptitle(t=main_title, y=1.0, fontsize=14)         for i, (im, lab) in enumerate(data, start=1):             plt.subplot(2, 5, i)             plt.title(label=lab.item())             plt.imshow(X=im)             if i == 10:                 break         plt.tight_layout(h_pad=3.0)         plt.show()     elif "bbox" in data.target_type and len(data.target_type) == 1:         fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6))         fig.suptitle(t=main_title, y=1.0, fontsize=14)         for (i, (im, (x, y, w, h))), axis              in zip(enumerate(data, start=1), axes.ravel()):             axis.imshow(X=im)             rect = Rectangle(xy=(x, y), width=w, height=h,                              linewidth=3, edgecolor='r',                              facecolor='none')             axis.add_patch(p=rect)             if i == 10:                 break         fig.tight_layout(h_pad=3.0)         plt.show()     elif "landmarks" in data.target_type and len(data.target_type) == 1:         plt.figure(figsize=(12, 6))         plt.suptitle(t=main_title, y=1.0, fontsize=14)         for i, (im, lm) in enumerate(data, start=1):             px = []             py = []             for j, v in enumerate(lm):                 if j%2 == 0:                     px.append(v)                 else:                     py.append(v)             plt.subplot(2, 5, i)             plt.imshow(X=im)             plt.scatter(x=px, y=py)             if i == 10:                 break         plt.tight_layout(h_pad=3.0)         plt.show()     elif len(data.target_type) == 4:         fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6))         fig.suptitle(t=main_title, y=1.0, fontsize=14)         for (i, (im, (_, lab, (x, y, w, h), lm))), axis              in zip(enumerate(data, start=1), axes.ravel()):             axis.set_title(label=lab.item())             axis.imshow(X=im)             rect = Rectangle(xy=(x, y), width=w, height=h,                              linewidth=3, edgecolor='r',                              facecolor='none', clip_on=True)             axis.add_patch(p=rect)             for j, (px, py) in enumerate(lm.split(2)):                 axis.add_patch(p=Circle(xy=(px, py)))             # for j, v in enumerate(lm):             #     if j%2 == 0:             #         px.append(v)             #     else:             #         py.append(v)             # axis.scatter(x=px, y=py)             # axis.plot(px, py) # `axis.scatter()` and `axis.plot()` of `plt.subplots()` don't work # properly. They shrink images so use `axis.add_patch()` instead.             if i == 10:                 break         fig.tight_layout(h_pad=3.0)         plt.show()  show_images(data=train_attr_data, main_title="train_attr_data") show_images(data=valid_identity_data, main_title="valid_identity_data") show_images(data=test_bbox_data, main_title="test_bbox_data") show_images(data=all_landmarks_data, main_title="all_landmarks_data") show_images(data=all_empty_data, main_title="all_empty_data") show_images(data=all_all_data, main_title="all_all_data") 
登录后复制

CelebA 是 PyTorch

CelebA 是 PyTorch

CelebA 是 PyTorch

CelebA 是 PyTorch

CelebA 是 PyTorch

CelebA 是 PyTorch

以上就是CelebA 是 PyTorch的详细内容,更多请关注php中文网其它相关文章!

本文来自网络,不代表四平甲倪网络网站制作专家立场,转载请注明出处:http://www.elephantgpt.cn/4725.html

作者: nijia

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

联系我们

联系我们

18844404989

在线咨询: QQ交谈

邮箱: 641522856@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部