给我买咖啡☕
*备忘录:
- 我的帖子解释了关于大小参数的randomcrop()。
- 我的帖子解释了randomcrop()有关填充,填充和padding_mode参数。
- 我的帖子解释了牛津iiitpet()。
>
>
randomcrop()可以随机裁剪图像,如下所示:
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomCrop origin_data = OxfordIIITPet( root="data", transform=None ) s500_394origin_data = OxfordIIITPet( # `s` is size. root="data", transform=RandomCrop(size=[500, 394]) ) s600_494pinTrue_data = OxfordIIITPet( # `pin` is pad_if_needed. root="data", transform=RandomCrop(size=[600, 494], pad_if_needed=True) ) s700_594pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], pad_if_needed=True) ) s800_694pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 694], pad_if_needed=True) ) s400_494pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 494], pad_if_needed=True) ) s600_294pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 294], pad_if_needed=True) ) s600_494pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 494], pad_if_needed=False) ) s700_594pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], pad_if_needed=False) ) s800_694pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 694], pad_if_needed=False) ) s400_494pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 494], pad_if_needed=False) ) s600_294pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 294], pad_if_needed=False) ) s700_594p100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], pad_if_needed=100) ) s800_694p100pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 694], padding=100, pad_if_needed=True) ) s900_794p100pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[900, 794], padding=100, pad_if_needed=True) ) s1000_894p100pinTrue_data = OxfordIIITPet( # `p` is padding. root="data", transform=RandomCrop(size=[1000, 894], padding=100, pad_if_needed=True) ) s600_694p100pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 694], padding=100, pad_if_needed=True) ) s800_494p100pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 494], padding=100, pad_if_needed=True) ) s800_694p100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 694], padding=100, pad_if_needed=False) ) s900_794p100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[900, 794], padding=100, pad_if_needed=False) ) s1000_894p100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[1000, 894], padding=100, pad_if_needed=False) ) s600_694p100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 694], padding=100, pad_if_needed=False) ) s800_494p100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[800, 494], padding=100, pad_if_needed=False) ) s400_294pn50origin_data = OxfordIIITPet( # `n` is negative. root="data", transform=RandomCrop(size=[400, 294], padding=-50) ) s500_394pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[500, 394], padding=-50, pad_if_needed=True) ) s600_494pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 494], padding=-50, pad_if_needed=True) ) s700_594pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-50, pad_if_needed=True) ) s350_444pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[350, 444], padding=-50, pad_if_needed=True) ) s450_244pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[450, 244], padding=-50, pad_if_needed=True) ) s500_394pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[500, 394], padding=-50, pad_if_needed=False) ) s600_494pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 494], padding=-50, pad_if_needed=False) ) s700_594pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-50, pad_if_needed=False) ) s350_444pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[350, 444], padding=-50, pad_if_needed=False) ) s450_244pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[450, 244], padding=-50, pad_if_needed=False) ) s700_594p100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100) ) s700_594p50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=50, pad_if_needed=True) ) s700_594p0pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=0, pad_if_needed=True) ) s700_594pn50pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-50, pad_if_needed=True) ) s700_594pn100pinTrue_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-100, pad_if_needed=True) ) s700_594p50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=50, pad_if_needed=False) ) s700_594p0pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=0, pad_if_needed=False) ) s700_594pn50pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-50, pad_if_needed=False) ) s700_594pn100pinFalse_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=-100, pad_if_needed=False) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5.5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i in range(1, 6): plt.subplot(1, 5, i) plt.imshow(X=data[0][0]) plt.tight_layout() plt.show() show_images1(data=s500_394origin_data, main_title="s500_394origin_data") show_images1(data=s600_494pinTrue_data, main_title="s600_494pinTrue_data") show_images1(data=s700_594pinTrue_data, main_title="s700_594pinTrue_data") show_images1(data=s800_694pinTrue_data, main_title="s800_694pinTrue_data") show_images1(data=s400_494pinTrue_data, main_title="s400_494pinTrue_data") show_images1(data=s600_294pinTrue_data, main_title="s600_294pinTrue_data") # show_images1(data=s600_494pinFalse_data, # main_title="s600_494pinFalse_data") # Error # show_images1(data=s700_594pinFalse_data, # main_title="s700_594pinFalse_data") # Error # show_images1(data=s800_694pinFalse_data, # main_title="s800_694pinFalse_data") # Error # show_images1(data=s400_494pinFalse_data, # main_title="s400_494pinFalse_data") # Error # show_images1(data=s600_294pinFalse_data, # main_title="s600_294pinFalse_data") # Error print() show_images1(data=s700_594p100origin_data, main_title="s700_594p100origin_data") show_images1(data=s800_694p100pinTrue_data, main_title="s800_694p100pinTrue_data") show_images1(data=s900_794p100pinTrue_data, main_title="s900_794p100pinTrue_data") show_images1(data=s1000_894p100pinTrue_data, main_title="s1000_894p100pinTrue_data") show_images1(data=s600_694p100pinTrue_data, main_title="s600_694p100pinTrue_data") show_images1(data=s800_494p100pinTrue_data, main_title="s800_494p100pinTrue_data") # show_images1(data=s800_694p100pinFalse_data, # main_title="s800_694p100pinFalse_data") # Error # show_images1(data=s900_794p100pinFalse_data, # main_title="s900_794p100pinFalse_data") # Error # show_images1(data=s1000_894p100pinFalse_data, # main_title="s1000_894p100pinFalse_data") # Error # show_images1(data=s600_694p100pinFalse_data, # main_title="s600_694p100pinFalse_data") # Error # show_images1(data=s800_494p100pinFalse_data, # main_title="s800_494p100pinFalse_data") # Error print() show_images1(data=s400_294pn50origin_data, main_title="s400_294pn50origin_data") show_images1(data=s500_394pn50pinTrue_data, main_title="s500_394pn50pinTrue_data") show_images1(data=s600_494pn50pinTrue_data, main_title="s600_494pn50pinTrue_data") show_images1(data=s700_594pn50pinTrue_data, main_title="s700_594pn50pinTrue_data") show_images1(data=s350_444pn50pinTrue_data, main_title="s350_444pn50pinTrue_data") show_images1(data=s450_244pn50pinTrue_data, main_title="s450_244pn50pinTrue_data") # show_images1(data=s500_394pn50pinFalse_data, # main_title="s500_394pn50pinFalse_data") # Error # show_images1(data=s600_494pn50pinFalse_data, # main_title="s600_494pn50pinFalse_data") # Error # show_images1(data=s700_594pn50pinFalse_data, # main_title="s700_594pn50pinFalse_data") # Error # show_images1(data=s350_444pn50pinFalse_data, # main_title="s350_444pn50pinFalse_data") # Error # show_images1(data=s450_244pn50pinFalse_data, # main_title="s450_244pn50pinFalse_data") # Error print() show_images1(data=s700_594p100origin_data, main_title="s700_594p100origin_data") show_images1(data=s700_594p50pinTrue_data, main_title="s700_594p50pinTrue_data") show_images1(data=s700_594p0pinTrue_data, main_title="s700_594p0pinTrue_data") show_images1(data=s700_594pn50pinTrue_data, main_title="s700_594pn50pinTrue_data") show_images1(data=s700_594pn100pinTrue_data, main_title="s700_594pn100pinTrue_data") # show_images1(data=s700_594p50pinFalse_data, # main_title="s700_594p50pinFalse_data") # Error # show_images1(data=s700_594p0pinFalse_data, # main_title="s700_594p0pinFalse_data") # Error # show_images1(data=s700_594pn50pinFalse_data, # main_title="s700_594pn50pinFalse_data") # Error # show_images1(data=s700_594pn100pinFalse_data, # main_title="s700_594pn100pinFalse_data") # Error # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, p=None, pin=False, f=0, pm='constant'): plt.figure(figsize=[10, 5.5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) temp_s = s im = data[0][0] for i in range(1, 6): plt.subplot(1, 5, i) if not temp_s: s = [im.size[1], im.size[0]] rc = RandomCrop(size=s, padding=p, # Here pad_if_needed=pin, fill=f, padding_mode=pm) plt.imshow(X=rc(im)) # Here plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="s500_394origin_data", s=[500, 394]) show_images2(data=origin_data, main_title="s600_494pinTrue_data", s=[600, 494], pin=True) show_images2(data=origin_data, main_title="s700_594pinTrue_data", s=[700, 594], pin=True) show_images2(data=origin_data, main_title="s800_694pinTrue_data", s=[800, 694], pin=True) show_images2(data=origin_data, main_title="s400_494pinTrue_data", s=[400, 494], pin=True) show_images2(data=origin_data, main_title="s600_294pinTrue_data", s=[600, 294], pin=True) # show_images2(data=origin_data, main_title="s600_494pinFalse_data", # s=[600, 494], pin=False) # Error # show_images2(data=origin_data, main_title="s700_594pinFalse_data", # s=[700, 594], pin=False) # Error # show_images2(data=origin_data, main_title="s800_694pinFalse_data", # s=[800, 694], pin=False) # Error # show_images2(data=origin_data, main_title="s400_494pinFalse_data", # s=[400, 494], pin=False) # Error # show_images2(data=origin_data, main_title="s600_294pinFalse_data", # s=[600, 294], pin=False) # Error print() show_images2(data=origin_data, main_title="s700_594p100origin_data", s=[700, 594], p=100) show_images2(data=origin_data, main_title="s800_694p100pinTrue_data", s=[800, 694], p=100, pin=True) show_images2(data=origin_data, main_title="s900_794p100pinTrue_data", s=[900, 794], p=100, pin=True) show_images2(data=origin_data, main_title="s1000_894p100pinTrue_data", s=[1000, 894], p=100, pin=True) show_images2(data=origin_data, main_title="s600_694p100pinTrue_data", s=[600, 694], p=100, pin=True) show_images2(data=origin_data, main_title="s800_494p100pinTrue_data", s=[800, 494], p=100, pin=True) # show_images2(data=origin_data, main_title="s800_694p100pinFalse_data", # s=[800, 694], p=100, pin=False) # Error # show_images2(data=origin_data, main_title="s900_794p100pinFalse_data", # s=[900, 794], p=100, pin=False) # Error # show_images2(data=origin_data, main_title="s1000_894p100pinFalse_data", # s=[1000, 894], p=100, pin=False) # Error # show_images2(data=origin_data, main_title="s600_694p100pinFalse_data", # s=[600, 694], p=100, pin=False) # Error # show_images2(data=origin_data, main_title="s800_494p100pinFalse_data", # s=[800, 494], p=100, pin=False) # Error print() show_images2(data=origin_data, main_title="s400_294pn50origin_data", s=[400, 294], p=-50) show_images2(data=origin_data, main_title="s500_394pn50pinTrue_data", s=[500, 394], p=-50, pin=True) show_images2(data=origin_data, main_title="s600_494pn50pinTrue_data", s=[600, 494], p=-50, pin=True) show_images2(data=origin_data, main_title="s700_594pn50pinTrue_data", s=[700, 594], p=-50, pin=True) show_images2(data=origin_data, main_title="s350_444pn50pinTrue_data", s=[350, 444], p=-50, pin=True) show_images2(data=origin_data, main_title="s450_244pn50pinTrue_data", s=[450, 244], p=-50, pin=True) # show_images2(data=origin_data, main_title="s500_394pn50pinFalse_data", # s=[500, 394], p=-50, pin=False) # Error # show_images2(data=origin_data, main_title="s600_494pn50pinFalse_data", # s=[600, 494], p=-50, pin=False) # Error # show_images2(data=origin_data, main_title="s700_594pn50pinFalse_data", # s=[700, 594], p=-50, pin=False) # Error # show_images2(data=origin_data, main_title="s350_444pn50pinFalse_data", # s=[350, 444], p=-50, pin=False) # Error # show_images2(data=origin_data, main_title="s450_244pn50pinFalse_data", # s=[450, 244], p=-50, pin=False) # Error print() show_images2(data=origin_data, main_title="s700_594p100origin_data", s=[700, 594], p=100) show_images2(data=origin_data, main_title="s700_594p50pinTrue_data", s=[700, 594], p=50, pin=True) show_images2(data=origin_data, main_title="s700_594p0pinTrue_data", s=[700, 594], p=0, pin=True) show_images2(data=origin_data, main_title="s700_594pn50pinTrue_data", s=[700, 594], p=-50, pin=True) show_images2(data=origin_data, main_title="s700_594pn100pinTrue_data", s=[700, 594], p=-100, pin=True) # show_images2(data=origin_data, main_title="s700_594p50pinFalse_data", # s=[700, 594], p=50, pin=False) # Error # show_images2(data=origin_data, main_title="s700_594p0pinFalse_data", # s=[700, 594], p=0, pin=False) # Error # show_images2(data=origin_data, main_title="s700_594pn50pinFalse_data", # s=[700, 594], p=-50, pin=False) # Error # show_images2(data=origin_data, main_title="s700_594pn100pinFalse_data", # s=[700, 594], p=-100, pin=False) # Error
登录后复制
以上就是Pytorch中的Randomcrop(3)的详细内容,更多请关注php中文网其它相关文章!